James–Stein type estimators for ordered normal means
نویسندگان
چکیده
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
منابع مشابه
Stein Type Estimators for Disturbance Variance in Linear Regression Model
This article has no abstract.
متن کاملEmpirical Bayes and Compound Estimation of Normal Means
This article concerns the canonical empirical Bayes problem of estimating normal means under squared-error loss. General empirical estimators are derived which are asymptotically minimax and optimal. Uniform convergence and the speed of convergence are considered. The general empirical Bayes estimators are compared with the shrinkage estimators of Stein (1956) and James and Stein (1961). Estima...
متن کاملApplications of James–Stein Shrinkage (I): Variance Reduction without Bias
In a linear regression model with homoscedastic Normal noise, I consider James–Stein type shrinkage in the estimation of nuisance parameters associated with control variables. For at least three control variables and exogenous treatment, I show that the standard leastsquares estimator is dominated with respect to squared-error loss in the treatment effect even among unbiased estimators and even...
متن کاملComparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملSURE Estimates for a Heteroscedastic Hierarchical Model.
Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic norm...
متن کاملThe Stein phenomenon for monotone incomplete multivariate normal data
We establish the Stein phenomenon in the context of two-step, monotone incomplete data drawn from Np+q(μ,Σ), a (p+ q)-dimensional multivariate normal population with mean μ and covariance matrix Σ. On the basis of data consisting of n observations on all p+q characteristics and an additional N − n observations on the last q characteristics, where all observations are mutually independent, denot...
متن کامل